
1!
CIS 422/522

CIS 422/522 Fall 2011! 1!

CIS 422/522  
Second Half Review!

CIS 422/522 Fall 2011! 2!

Grading Modifications!

•  Will drop lowest test score, if that improves
your overall grade!
–  Means that you can skip 2nd midterm!

•  Case 2: you skip final (or drop grade):!

•  Case 1: you take the final!

–  Compute your grade with and without lowest test
grade, take best!

Proj. 1! Proj. 2! Test! Participation!
25! 45! 20! 10!

Proj. 1! Proj. 2! Midterm! Final! Participation!
20! 40! 15! 15! 10!

CIS 422/522 Fall 2011! 3!

View of SE in this Course!

•  The purpose of software engineering is to
gain and maintain intellectual and managerial
control over the products and processes of
software development.!
–  “Intellectual control” means that we are able

make rational choices based on an understanding
of the downstream effects of those choices (e.g.,
on system properties).!

–  Managerial control means we control
development resources (budget, schedule,
personnel). !

CIS 422/522 Fall 2011! 4!

Real meaning of “control”!

•  What does “control” really mean?!
•  Cannot get everything under control then run

on autopilot!
•  Rather, control means a continuous feedback

loop!
1.  Define ideal or goal!
2.  Make a step!
3.  Measure deviation from idea!
4.  Correct direction or redefine ideal and  

go back to 2!

2!
CIS 422/522

CIS 422/522 Fall 2011! 5!

Achieving System Qualities Through  
Software Architecture !

CIS 422/522 Fall 2011! 6!

Key System Properties!

•  System qualities stakeholders may require!
•  System run-time properties!

–  Performance, Security, Availability, Usability!
•  System static properties!

–  Modifiability, Portability, Reusability, Testability!
•  Production properties? (effects on project)!

–  Work Breakdown Structure, Scheduling, time to
market!

•  Business/Organizational properties?!
–  Lifespan, Versioning, Interoperability!

CIS 422/522 Fall 2011! 7!

Controlling the Product Cycle!

Business Goals
 Hardware
 Software
 Marketing, etc.

Product Planning
 Economic Evaluation
 Development Strategy
 Marketing Strategy
 Prioritization

Requirements
 Capabilities
 Qualities
 Reusability

Architecture
 Tradeoffs of
 quality goals

Strategic
Plan

ConOps or BRD
Business

Requirements
Definition

SRS
Software

Requirements
Specification

Architecture
Design

Documents
Traceability

Detailed
Design

Internal
Design

Documn

Coding

Stakeholder goals

Design decisions,
tradeoffs and constraints

Code
Documn.

Test
Plans

Testing

CIS 422/522 Fall 2011! 8!

Behavioral vs. Developmental !

Behavioral (observable)!
•  Performance!
•  Security !
•  Availability !
•  Reliability!
•  Usability!
!
! 
Properties resulting from the
properties of components,
connectors and interfaces
that exist at run time.!

Developmental Qualities!
•  Modifiability(ease of change)!
•  Portability!
•  Reusability!
•  Ease of integration !
•  Understandability!
•  Independent work

assignments 
!
!Properties resulting from the
properties components,
connectors and interfaces
that exist at design time
whether or not they have any
distinct run-time
manifestation.!

3!
CIS 422/522

CIS 422/522 Fall 2011! 9!

Importance to Stakeholders!

•  There are many stakeholders with many
possible quality requirements!

•  Important because their interests often
conflict!
–  E.g. Performance vs. security, initial cost vs.

maintainability !
–  Requires making tradeoffs in the system design!
–  Making successful tradeoffs requires

understanding the nature, source and priority of
the quality requirements!

•  This is this is the job of the system architect!

CIS 422/522 Fall 2011! 10!

Fit in the Development Cycle!

Software
Design

System Integration
and Testing

Coding

Deployment

Maintenance and
Evolution

Requirements
Analysis

Software
Architecture

“…The earliest artifact that enables the priorities
among competing concerns to be analyzed, and
it is the artifact that manifests the concerns as
system qualities.”

CIS 422/522 Fall 2011! 11!

Definition!

!“The software architecture of a program or computing system is
the structure or structures of the system, which comprise
software components, the externally visible properties of those
components, and the relationships among them.” - Bass,
Clements, Kazman  
!

•  Systems typically comprise more than one
architecture!
–  There is more than one useful decomposition into

components and relationships!
–  Each addresses different system properties or design goals!

•  It exists whether any thought goes into it or not!!
–  Decisions are necessarily made if only implicitly!
–  Issue is who makes them and when!

•  Many things called “architecture” are not!
CIS 422/522 Fall 2011! 12!

This is not!
Control
Process

(CP)

Noise
Model

(MODN)

Reverb
Model

(MODR)

Prop Loss
Model

(MODP)

Typical (but uninformative) architectural diagram
•  What is the nature of the components?
•  What is the significance of the link?
•  What is the significance of the layout?

4!
CIS 422/522

CIS 422/522 Fall 2011! 13!

Examples: These are architectures!
•  An architecture comprises a set of!

–  Software components!
–  Component interfaces!
–  Relationships among them!

•  Examples!

Structure! Components! Interfaces! Relationships!

Calls Structure! Programs! Program interface
and parameter
declarations.!

Invokes with
parameters  
(A calls B)!

Data Flow! Functional tasks! Data types or
structures!

Sends-data-to!

Process! Sequential
program
(process, thread,
task)!

Scheduling and
synchronization
constraints!

Runs-concurrently-
with, excludes,
precedes!

CIS 422/522 Fall 2011! 14!

Implications for the Development
Process!

Goal is to keep developmental goals and architectural
capabilities in synch:!
•  Understand the goals for the system (e.g., business

case or mission)!
•  Understand/communicate the quality requirements!
•  Design architecture(s) that satisfy quality

requirements!
–  Choose appropriate architectural structures!
–  Design structures to satisfy qualities!
–  Document to communicate design decisions!

•  Evaluate/correct the architecture!
•  Implement the system based on the architecture!

CIS 422/522 Fall 2011! 15!

Designing Architectures!

CIS 422/522 Fall 2011! 16!

Design Means…!
•  Design Goals: the purpose of design is to solve some

problem in a context of assumptions and constraints!
–  Requirements: behavioral and developmental!
–  Assumptions: what must be true of the design!
–  Constraints: what should not be true!
–  These define the design goals!

•  Process: design proceeds through a sequence of
decisions!
–  A good decision brings us closer to the design goals!
–  An idealized design process systematically makes good

decisions!
–  Any real design process is chaotic!

•  Good Design: by definition a good design is one that
satisfies the design goal!

5!
CIS 422/522

CIS 422/522 Fall 2011! 17!

The Design Space!

•  A Design: is (a representation of) a
solution to a problem !
–  Represents a set of choices!

•  Typically large set of possible
choices!

•  Must navigate through possibilities!
•  Invariably requires tradeoffs!

–  Some designs are better than
others (notion of good design)!

Problem
Space!

Possible
Solutions “Good” 

solutions  
(designs)!

Our 
design!x x x

x x x

Design  
Constrains!

CIS 422/522 Fall 2011! 18!

Which structures should we use?!

•  Choice of structure depends the specific
design goals !

•  Compare to architectural blueprints!
–  Different view for load-bearing structures, electrical,

mechanical, plumbing!

Structure! Components! Interfaces! Relationships!
Calls Structure! Programs

(methods,
services)!

Program interface and
parameter declarations!

Invokes with
parameters  
(A calls B)!

Data Flow! Functional tasks! Data types or
structures!

Sends-data-to!

Process! Sequential
program (process,
thread, task)!

Scheduling and
synchronization
constraints!

Runs-concurrently-with,
excludes, precedes!

CIS 422/522 Fall 2011! 19!

Elevation/Structural!

CIS 422/522 Fall 2011! 20!

Models/Views!

•  Each is a view of the same house!
•  Different views answer different kinds of questions!

–  How many electrical outlets are available in the kitchen?!
–  What happens if we put a window here?!

•  Designing for particular software qualities also
requires the right architectural model or “view”!
–  Any model can present only a subset of system structures

and properties!
–  Different models allows us to answer different kinds of

questions about system properties!
•  Need a model that makes the properties of interest

and the consequences of design choices visible to
the designer and other stakeholders!

6!
CIS 422/522

CIS 422/522 Fall 2011! 21!

Navigating the Design Space!

•  Design principles, heuristics, and methods
assist the designer in navigating the design
space!
–  Design is a sequence of decisions!
–  Methods help tell us what kinds of decisions

should be made!
–  Principles and heuristics help tell us:!

•  The best order in which to make decisions!
•  Which of the available choices will lead to the design

goals!

CIS 422/522 Fall 2011! 22!

Example: 
Designing the Module Structure!

CIS 422/522 Fall 2011! 23!

Modularization!

•  For large, complex software, must divide the
development into work assignments (WBS).
Each work assignment is called a “module.”!

•  Properties of a “good” module structure!
–  Parts can be designed, understood, or

implemented independently!
–  Parts can be tested independently!
–  Parts can be changed independently!
–  Integration goes smoothly!

CIS 422/522 Fall 2011! 24!

What is a module?!

•  A module is characterized by two things:!
–  Its interface: services that the module provides to

other parts of the systems!
–  Its secrets: what the module hides (encapsulates).

Design/implementation decisions that other parts
of the system should not depend on!

•  Modules are abstract, design-time entities !
–  Modules are “black boxes” – specifies the visible

properties but not the implementation!
–  May or may not directly correspond to

programming components like classes/objects!

7!
CIS 422/522

CIS 422/522 Fall 2011! 25!

A Simple Module!

•  A simple integer stack!
•  The interface specifies what a

programmer needs to know to use
the stack correctly, e.g.!

–  push: push integer on stack top!
–  pop: remove top element!
–  peek: get value of top element!

•  The secrets (encapsulated) any
details that might change from one
implementation to another!

–  Data structures, algorithms!
–  Details of class/object structure!

•  A module spec is abstract:
describes the services provided but
allows many possible
implementations!

stack
peek(int)

push(int)

pop()

CIS 422/522 Fall 2011! 26!

Module Hierarchy!

•  For large systems, the set of modules need to be
organized such that!
–  We can check that all of the functional requirements

have been allocated to some module of the system!
–  Developers can easily find the module that provides

any given capability!
–  When a change is required, it is easy to determine

which modules must be changed!
•  The module hierarchy defined by the submodule-

of relation provides this architectural view!

CIS 422/522 Fall 2011! 27!

Module Hierarchy!
Problem

Interface

Encapsulated

“Secrets” “Secrets” “Secrets”

“Secrets” “Secrets”

Interface

Encapsulated

Interface

Encapsulated

Interface

Encapsulated

Submodule-of relation

Leaf Modules = !
Work

assignments!

CIS 422/522 Fall 2011! 28!

Modular Structure!
•  Comprises components, relations, and interfaces!
•  Components!

–  Called modules!
–  Leaf modules are work assignments!
–  Non-leaf modules are the union of their submodules!

•  Relations (connectors)!
–  submodule-of => implements-secrets-of!
–  The union of all submodules of a non-terminal module must

implement all of the parent module’s secrets!
–  Constrained to be acyclic tree (hierarchy)!

•  Interfaces (externally visible component behavior)!
–  Defined in terms of access procedures (services or method)!
–  Only external (exported) access to internal state!

8!
CIS 422/522

CIS 422/522 Fall 2011! 29!

Decomposition Approach!

CIS 422/522 Fall 2011! 30!

Module Decomposition!
•  Approach: divide the system into submodules according to the

kinds of design decisions they encapsulate (secrets)!
–  Design decisions that are closely related (likely to change together)

are grouped in the same submodule!
–  Design decisions that are weakly related (likely to change

independently) are allocated to different modules!
–  Characterize each module by its secrets (what it hides)!

•  Viewed top down, each module is decomposed into
submodules such that:!
–  Each design decision allocated to the parent module is allocated to

exactly one child module!
–  Together the children implement all of the decisions of the parent!

•  Stop decomposing when each module is!
–  Simple enough to be understood fully!
–  Small enough that it makes sense to throw it away rather than re-do!

•  This is called an information-hiding decomposition!

CIS 422/522 Fall 2011! 31!

Module Hierarchy!
Problem

Interface

Encapsulated

“Secrets” “Secrets” “Secrets”

“Secrets” “Secrets”

Interface

Encapsulated

Interface

Encapsulated

Interface

Encapsulated

Submodule-of relation

Given a set of likely
changes C1, C2, … Cn
and following these
rules, what happens:!
•  To each change?!
•  To things that  
 change together?!
•  Change separately?!

CIS 422/522 Fall 2011! 32!

Method of Communication!
Module Guide!

–  Documents the module structure:!
•  The set of modules!
•  The responsibility of each module in terms of the

module’s secret!
•  The “submodule-of relationship”!
•  The rationale for design decisions !

–  Document purpose(s)!
•  Guide for finding the module responsible for some aspect

of the system behavior!
•  Baseline design document!
•  Provides a record of design decisions (rationale)!

9!
CIS 422/522

CIS 422/522 Fall 2011! 33!

Specify Module Interfaces!
Module Interface Specifications!

–  Documents all assumptions user’s can make about the
module’s externally visible behavior (of leaf modules)!

•  Access programs, events, types, undesired events!
•  Design issues, assumptions!

–  Document purpose(s)!
•  Provide all the information needed to write a module’s

programs or use the programs on a module’s interface
(programmer’s guide, user’s guide)!

•  Specify required behavior by fully specifying behavior of the
module’s access programs!

•  Define any constraints!
•  Define any assumptions!
•  Record design decisions!

CIS 422/522 Fall 2011! 34!

Define as Abstract Interface!

•  An abstract interface defines the set of
assumptions that one module can make about
another!

•  While detailed, an abstract interface specification
does not describe the implementation !
–  Does not specify algorithms, private data, or data

structures!
–  Preserves the module’s secrets!

•  One-to-many: one abstract module specification
allows many possible implementations!
–  Developer is free to use any implementation that is

consistent with the interface!
–  Developer is free to change the implementation!

CIS 422/522 Fall 2011! 35!

Why these properties?!

Module Implementer!
•  The specification tells me

exactly what capabilities my
module must provide to users!

•  I am free to implement it any
way I want to!

•  I am free to change the
implementation if needed as
long as I don’t change the
interface!

Module User!
•  The specification tells me how

to use the module’s services
correctly!

•  I do not need to know anything
about the implementation
details to write my code!

•  If the implementation changes,
my code stays the same!

Key idea: the abstract interface specification defines!
a contract between a module’s developer and its users  

that allows each to proceed independently!

CIS 422/522 Fall 2011! 36!

Evaluation Criteria!

•  Evaluation criteria follow from goals of the model: should
be able to answer “yes” to the following review questions?!

•  Completeness!
–  Is every aspect of the system the responsibility of one module?!
–  Do the submodules of each module partition its secrets?!

•  Ease change!
–  Is each likely change hidden by some module?!
–  Are only aspects of the system that are very unlikely to change

embedded in the module structure?!
–  For each leaf module, are the module’s secrets revealed by it’s

access programs?!
•  Usability!

–  For any given change, can the appropriate module be found
using the module guide!

10!
CIS 422/522

CIS 422/522 Fall 2011! 37!

Interface Design!

Considerations in interface design!
Design principles!
Role of information hiding and abstraction!

CIS 422/522 Fall 2011! 38!

Module Interface Design Goals!

General goals addressed by module interface design!
1.  Control dependencies!

–  Encapsulate anything other modules should not depend on!
–  Hide design decisions and requirements that might change

(data structures, algorithms, assumptions)!
2.  Provide services!

–  Provide all the capabilities needed by the module’s users!
–  Provide only what is needed (complexity)!
–  Provide problem appropriate abstraction (useful services and

states)!
–  Provide reusable abstractions!

•  Specific goals need to be captured (e.g., in the
module guide and interface design documents)!

CIS 422/522 Fall 2011! 39!

1. Controlling Dependencies!

•  Addressed using the principle of information hiding!
•  IH: design principle of limiting dependencies between

components by hiding information other components
should not depend on!

•  When thinking about what to put on the interface!
–  Design the module interface to reveal only those design

decisions considered unlikely to change!
–  Required functionality allocated to the module and

considered likely to change must be encapsulated!
–  Each data structure is used in only one module!
–  Any other program must access internal data by calling

access programs on the interface!

CIS 422/522 Fall 2011! 40!

2. Provide Services!
•  Addressed by principle of Abstraction: abstract

interface provide only the needed services!
•  Helps reduce complexity!

–  Approach: Separate information important to the problem at
hand from that which is not!

–  Reduces the amount of information that must be considered
at one time!

–  Abstraction suppresses or hides “irrelevant detail”!
•  Improves understanding!

–  Approach: Provide abstractions (e.g., types) that make it
easier to model a class of problems!

•  May be quite general (e.g., type real, type float)!
•  May be very problem specific (e.g., class automobile, book object)!

–  Leverage domain knowledge to simplify understanding,
creating, checking designs!

11!
CIS 422/522

CIS 422/522 Fall 2011! 41!

Example: Car Object!

•  What are the abstractions?!
–  Purpose of each?!

•  What information is hidden?!

CIS 422/522 Fall 2011! 42!

Which Principle to Use!

•  Use abstraction when the issue is what
should be on the interface (form and content)!

•  Use information hiding when the issue is what
information should not be on the interface
(visible or accessible)!

CIS 422/522 Fall 2011! 43!

Quality Assurance!

The role of testing*!

*From Prof. Michal Young
CIS 422/522 Fall 2011! 44!

Why Test!

•  Stupid question?!
–  But we need to be clear about goals before we

can make reasoned choices regarding the other
questions, who, what, when, and how!

–  In general: testing provides the feedback in our
“feedback control loop”!

•  We test to avoid costs!
–  Costs during software development!
–  Cost of defects in the final product!

12!
CIS 422/522

CIS 422/522 Fall 2011! 45!

Errors, Detection, and Repairs!

•  Basic observation: !
–  Cost of a defect grows quickly with time between

making an error and fixing it!
–  “Early” errors are the most costly!

•  Misunderstanding of requirements, architecture that does
not support a needed change, ... !

•  Goal is to reduce the gap between making an
error and fixing it!
–  Continue throughout development!
–  People make mistakes in every activity, so every

work product must be tested as soon as possible!

CIS 422/522 Fall 2011! 46!

Choosing What!

•  For every work product, we ask: How can I
find defects as early as possible!
–  Ex: How can I find defects in software architecture

before we’ve designed all the modules? How can
I find defects in my module code before it’s
integrated into the system?!

•  Divide and conquer!
–  What properties can be checked automatically?!
–  What properties can be (effectively) tested

dynamically?!
–  How can I make reviews cost-effective?!

CIS 422/522 Fall 2011! 47!

Verification and Validation:  
Divide and Conquer!

•  Validation vs. Verification!
–  Are we building the right product? vs. Are we

building it right? !
–  Crossing from judgment to precise, checkable

correctness property. Verification is at least partly
automatable, validation is not!

•  Correctness is a relation between spec and
implementation!
–  To make a property verifiable (testable,

checkable, ...) we must capture the property in a
spec!
!

CIS 422/522 Fall 2011! 48!

How (from why, who, when, what)!

•  Black box: Test design is part of designing
good specifications!

•  This will change specs, in a good way. Factoring
validation from verification is particularly hard, but
particularly cost-effective as it leverages and focuses
expensive human judgment!

•  White (or glass) box: Test design from
program design!

•  Executing every statement or branch does not guarantee
good tests, but omitting a statement is a bad smell.!

13!
CIS 422/522

CIS 422/522 Fall 2011! 49!

Questions?!

